Устройство самолета: основные части и их названия

Управление самолетом может осуществлять только человек, прошедший обучение пилотированию.

Управление пассажирскими самолетами выполняет экипаж, состоящий из командира воздушного судна и второго пилота.

Управление истребителем осуществляет военный, служащий по контракту и обладающий офицерским званием. Стоит отметить, что в военной авиации термин «пилот» не применяется, самолет управляется летчиком.

Основные органы управления

Все самолеты (гражданские и военные) имеют общие органы управления, среди которых выделяют:

  • штурвал;
  • педали;
  • рычаги;
  • различные приборы и индикаторы.

Главным органом управления в любом самолете считается штурвал. Посредством штурвала осуществляется управление судном по оси крена и тангажа.

Устройство самолета: основные части и их названия

1 — Пространственное положение самолета; 2 — Навигационный дисплей; 3 — Дублирующий прибор пространства и положения самолета и навигации; 4 — Часы; 5 — Бортовой компьютер; 6 — Ручка выпуска и уборки шасси; 7 — Садстик; 8 — Кнопка отключения автопилота; 9 — Педали торможения; 10 — Противопожарная система; 11 — Кнопки включения топливных насосов; 12 Ручка открытия окна; 13 — Автопилот; 14 — Рычаг управления двигателем; 15 — Тумблер управления спойлерами; 16 — Ручка управления закрылками; 17 — Кнопки включения аккумуляторных батарей; 18 — Кнопки управления температурой воздуха в кабине и салоне самолета; 19 — Планшетный компьютер; 20 — Панель управления самолетом

Системы управления гражданским самолетом подразделяется на ручную, полуавтоматическую, автоматическую и комбинированную. Первые воздушные судна обладали только ручной системой управления, работа которой зависела от усилий пилота.

Управление многими гражданскими летательными аппаратами осуществляется в комбинированном режиме. В пассажирских лайнерах присутствует автопилот, который позволяет перевести полет в автоматический режим.

Если человек хочет получить лицензию частного пилота, то ему потребуется изучить все органы управления самолетами. Помимо этого, потребуется пройти ряд тестов, иметь достаточное количество часов налета и пройти медицинскую комиссию.

Штурвал

Посредством поворота штурвала в стороны осуществляется регулирование крена. Тяга на себя и от себя позволяет управлять тангажом. Повороты ручки управления самолетом воздействуют на крыльевые элероны. Тяга на себя и от себя позволяет регулировать рули высоты и элевоны.

В итоге при повороте штурвала влево или вправо судно начинает крениться. Притягивание ручки управления самолетом на себя — задирает нос летательного аппарата, а отталкивание приводит к пикированию.

Стоит отметить, что передача сигналов на элероны и рули высоты осуществляется в механическом, электродистанционным или гидравлическом режиме.

Устройство самолета: основные части и их названия

Чтобы управлять истребителем для начала нужно изучить функции и виды штурвалов. На штурвальном органе управления могут находиться дополнительные переключатели, ответственные за радиосвязь или включение специализированных режимов.

Педали

Педали в летательных аппаратах используются для воздействия на руль контроля. В кабине находится две педали. От нажатия на них зависит поворот самолета вправо и влево без крена (так называемое рысканье). Пилот должен тонко чувствовать работу педалей, чтобы правильно регулировать положение судна.

Устройство самолета: основные части и их названия

Стоит отметить, что изменение курса посредством педалей осуществляется на разбеге и пробеге. Руль управления позволяет незначительно корректировать установленный курс. Поворот штурвала позволяет быстрее изменять направление полета посредством крена.

Для управления летательными аппаратами будущий пилот изучает теорию и проходит практику в течение длительного периода времени. Даже для управления частным маленьким самолетом потребуется налетать не менее 25 часов с инструктором и соответствовать другим требованиям.

От настроек управления самолетом и конкретного судна зависит сложность полета. Стоит отметить, что на большинстве лайнеров большая часть полета может проходить в автоматическом режиме. Маленькие гражданские самолеты не обладают автопилотом, поэтому на протяжении всего полета потребуется контролировать положение самолета, скорость и другие параметры вручную.

Рычаги

Главными рычагами на воздушном судне считаются рычаги управления двигателем (РУД). Посредством воздействия на рычаг изменяется тяга двигателя.

Увеличение тяги приводит к ускорению аппарата, уменьшение — к замедлению. При увлечении тяги увеличивается расход топлива.

Если человек хочет знать, как осуществляется настройка управления самолетами, потребуется изучить оптимальные положения рычага и тяги самолета при различных ситуациях.

Устройство самолета: основные части и их названия

При полете рычаг контроля двигателя практически всегда переведен в положение малого газа для экономии топлива. Корректировать положение рычага нужно исходя из показаний приборов.

Управление истребителем осуществляется тем же образом, что и управление частным или многоцелевым летательным аппаратом.

На боевых суднах очень часто можно обнаружить форсажный режим, который активируется при переводе рычага контроля в положение полного газа.

Приборы

Приборы отображают параметры полета. Неполадка приборов представляет серьезную опасность, поэтому при обслуживании судна обращают внимание на работу отдельных датчиков. Среди приборов самолета выделяют:

  • высотомер;
  • индикатор воздушной скорости;
  • термометр;
  • авиагоризонт;
  • тахометр;
  • вариометр;
  • курсовые приборы.

На приборной доске отображается множество различных показателей. При виде самолетных приборов в первый раз человек сталкивается с большими сложностями. Чтобы управлять судном, необходимо знать расположение и назначение каждого прибора.

Устройство самолета: основные части и их названия

Приборная панель СУ-25

Изучение информации о приборной панели — часть обучения пилотированию. Независимо от того, каким именно пилотом человек собирается стать, требуется знать расположение всех датчиков. Стоит отметить, что опытный специалист способен посадить самолет в условиях нулевой ведомости, ориентируясь только по приборам.

Остальные органы управления

Помимо главных органов контроля, судно обладает дополнительными. Они присутствуют не во всех летательных аппаратах. Среди таких органов выделяют:

  • основной пилотажный прибор (имеется в пассажирском Боинге 737);
  • навигационный дисплей (электронный прибор);
  • панель выбора режима полета.

В современных воздушных суднах встречается большое количество электроники. Навигационный дисплей и пилотажный прибор отображают главную информацию о полете, положении самолета, скорости и других важных параметрах.

Для расширения кругозора желательно знать о новых органах контроля аппарата.

Пилот гражданской авиации перед началом пилотирования изучает информацию об особенностях и уникальных чертах самолета, которым он будет управлять.

Устройство самолета: основные части и их названия

Основной пилотажный прибор. 1 — FMA (Flight Mode Annunciator). Указывает режимы работы автомата тяги и системы траекторного управления самолётом; 2 — Блок указателя скорости; 3 — Авиагоризонт; 4 — Указатель работы автопилота; 5 — Блок указателя высоты; 6 — Указатель вертикальной скорости; 7 — Указатель курса и путевого угла.

Управление электроникой выполняется командиром воздушного судна и вторым пилотом. После взлета авиалайнера часто включают автопилот посредством переключения режима полета на панели выбора.

А Вы бы хотели научиться управлять самолетом?

Пошаговая инструкция управления самолетом

Управление летательным аппаратом осуществляется только после длительного обучения. Однако в экстренной ситуации человеку может потребоваться взять контроль над авиалайнером в виде второго или главного пилота. Изучение пошаговой инструкции поможет понять, каким образом управляется пассажирский лайнер.

Устройство самолета: основные части и их названия

Пошаговая инструкция будет интересна и тем людям, которые хотят узнать, как осуществляется пилотирование гражданского авиалайнера. Наибольшую сложность для пилотов представляет взлет и посадка. При непосредственном полете редко возникают внештатные ситуации и форс-мажорные обстоятельства.

Перед началом изучения инструкции о том, как управлять воздушным судном, требуется узнать об органах воздействия и понять принцип работы летательного аппарата. Системы управления современными самолетами требуют минимального вмешательство пилота.

Подготовка к взлету

Если человек оказался в качестве пилота в лайнере, то первое, что нужно сделать — подготовиться к взлету. Подготовка включает в себя осмотр судна, проверку штурвала и закрылок. Органы контроля самолетом должны двигаться беспрепятственно. Провести осмотр отдельных частей самолета сможет только опытный механик.

После проверки датчиков, органов контроля, работы отдельных механизмов переходят к началу полета, которое именуется взлет. Чтобы летательный аппарат успешно взлетел, необходимо выполнить ряд действий.

Взлет

Самолет взлетает со взлетно-посадочной полосы. В аэропорту контроль за взлетом и посадкой осуществляют диспетчеры. Переходить к взлету можно только после получения разрешения. Перед непосредственным взлетом пилот удостоверяется в том, что судно находится в подходящей взлетной конфигурации (закрылки впущены во взлетное положение). Процедура взлета включает в себя следующие этапы:

  1. Выровнять самолет на взлетно-посадочной полосе. Также потребуется убедиться в том, что тормоза опущены и курс на приборах соответствует курсу ВПП.
  2. Включить посадочные фары и выключить рулежную фару. После этого потребуется увеличить обороты двигателя до 40% и дать им стабилизироваться (после стабилизации сработает соответствующий датчик).
  3. Убедиться в том, что правильный режим взлета установлен. Контролировать РУД и начать взлет.
  4. Давить на штурвал от себя до достижения скорости в 80 узлов. Также внимательно следить за показателями.
  5. После достижения скорости принятия решения командир воздушного судна принимает окончательное решение о взлете или прекращении процедуры.
  6. После команды взлета руки с РУД убираются, ручка для управления самолетом (штурвал) тянется на себя. После успешного взлета необходимо продолжить набор высоты и следить за датчиками.

Устройство самолета: основные части и их названия

Схема процедуры взлета

Набор высоты может проходить в автоматическом режиме. Для успешного взлета авиалайнера в кабинете находится КВС и второй пилот. Управление пассажирскими летательными аппаратами в одиночку осуществлять крайне проблематично.

Полет

Во время полета нужно поддерживать заданные параметры. Применяется автопилот или ручное управление. Активные системы управления самолетов помогают придерживаться требуемых значений. Во время полета главная задача — поддерживать заданный курс, высоту и скорость. Для корректировки параметров полета изменяется тяга, крен или тангаж.

Посадка

Посадка по приборам осуществляется командиром и вторым пилотом. Управлять самолетом не так сложно, как его посадить. Для посадки выполняются следующие действия:

  1. Примерно за 5 миль перед входом в глиссаду (глиссада — траектория полета непосредственное перед посадкой) потребуется выпустить закрылки. Убедиться в том, что выпуск закрылок не противоречит требованиям по скорости.
  2. Включить режим захода на посадку. Дождаться срабатывания датчиков.
  3. Установить курс на взлетно-посадочную полосу.
  4. Установить контакт с наземными ориентирами. При невозможности сделать это — уйти на второй круг.
  5. Медленно снижать тягу таким образом, чтобы при касании добиться положения рычага «малый газ».
  6. На высоте 20–25 футов начинается выравнивание судна. Требуется потянуть ручку управления самолетом (штурвал) на себя, создавая тангаж 6 градусов.
  7. После сцепления с ВПП контролировать торможение. При необходимости надавить на штурвал для того, чтобы прижать переднюю опору шасси и улучшить управляемость.

Посадка осуществляется силами командира воздушного судна. Второй пилот контролирует датчики и сообщает о срабатывании того или иного индикатора. У каждого члена экипажа своя задача при взлете и посадке. Посадка пассажирского авиалайнера проходит в штатном режиме при соблюдении всех норм.

Если процедура выполняется в неблагоприятных условиях, требуется следовать особым инструкциям. Если КВС при выполнении посадки видит, что не удается установить контакт с наземными ориентирами или не срабатывают нужные датчики, самолет уходит на второй круг.

Как стать пилотом?

Человек, который управляет самолетом, — профессия пилота или летчика. Чтобы стать пилотом гражданской авиации, потребуется пройти обучение в летном училище или частной школе.

Проще всего получить свидетельство частного пилота. Военный летчик подготавливается ВКС России.

Чтобы стать летчиком боевого самолета, потребуется вначале стать военнослужащим по контракту и пройти обучение в военном учебном заведении.



Пилот с частной лицензией может управлять только суднами, которые не заняты в коммерческой перевозке. Стоит отметить, что существуют разные типы лицензий.

После получения частного свидетельства можно получить лицензию коммерческого пилота для того, чтобы пилотировать самолеты, занимающиеся авиаперевозками. Стать пилотом и управлять самолетом можно только после подтверждения квалификации.

Коммерческий пилот и военный летчик — профессии, к которым выдвигается огромное количество требований.

Источник: https://samoletos.ru/samolety/upravlenie

Конструкция фюзеляжей самолетов

Фюзеляж самолета состоит из каркаса и обшивки. Существуют фюзеляжи трех типов: ферменные, силовой каркас которых представляет собой пространственную ферму; балочные — их силовой каркас образован продольными и поперечными элементами и работающей обшивкой; смешанные, у которых передняя часть является ферменной, а хвостовая — балочной или наоборот.

Ферменные фюзеляжи. Как было указано выше, силовой частью ферменного фюзеляжа является каркас, представляющий собой пространственную ферму.

Стержни фермы работают на расстяжение или сжатие, а обшивка служит лишь для придания фюзеляжу обтекаемой формы. Ферма образована (рис.

50) лонжеронами, расположенными на всей длине или части длины фюзеляжа, стойками и раскосами в вертикальной плоскости, распорками и расчалками в горизонтальной плоскости и диагоналями.

Читайте также:  Как добраться до ялты из москвы на самолете

Устройство самолета: основные части и их названия  

Вместо жестких раскосов и диагоналей широко практикуется установка проволочных или ленточных расчалок.

К каркасу фермы крепятся узлы, которые служат для присоединения к фюзеляжу крыла, оперения, шасси и других частей самолета.

Фермы фюзеляжа, как правило, изготовляются сварными из труб и реже клепанными из дюралюминиевых профилей. Обшивка выполняется из полотна, фанеры или листов дюралюминия.

Обтекаемую форму ферменному фюзеляжу придают специальные несиловые надстройки — обтекатели, называемые гаргротами.

Основными преимуществами ферменных фюзеляжей перед балочными являются простота изготовления и ремонта, удобство монтажа, осмотра и ремонта оборудования, размещенного в фюзеляже.

К недостаткам относятся несовершенство аэродинамических форм, малая жесткость, малый срок службы, невозможность полностью использовать внутренний объем для размещения грузов. В настоящее время ферменные конструкции применяются редко и в основном для легких самолетов.

Балочные фюзеляжи представляют собой балку обычно овального или круглого сечения, в которой на изгиб и кручение работают подкрепленная обшивка и элементы каркаса.

Встречаются три разновидности балочных фюзеляжей: лонжеронно-балочный, стрингерно-балочный (полумонокок), скорлупно-балочный (монокок).

Балочные конструкции фюзеляжей выгоднее ферменных, так как силовая часть у них образует обтекаемую поверхность, причем силовые элементы размещаются по периферии, оставляя внутреннюю полость свободной.

Это дает возможность получить меньший мидель; жесткая работающая обшивка обеспечивает получение гладкой неискажаемой поверхности, что приводит к уменьшению лобового сопротивления. Балочные фюзеляжи выгоднее и в весовом отношении, так как материал конструкции более удален от нейтральной оси и, следовательно, лучше используется, чем у фюзеляжей ферменной конструкции.

Каркас лонжеронно-балочного фюзеляжа образуют лонжероны, стрингеры и шпангоуты. Каркас обшит дюралюминиевыми листами (обшивкой).

Каркас стрингерно-балочного фюзеляжа (рис. 51) состоит из часто поставленных стрингеров и шпангоутов, к которым

Устройство самолета: основные части и их названия

крепится металлическая обшивка большей, чем у лонжеронно-балочных фюзеляжей, толщины.

Скорлупно-балочный фюзеляж (рис. 52) не имеет элементов продольного набора и состоит из толстой обшивки, подкрепленной шпангоутами.

В настоящее время преобладающим типом фюзеляжей является стрингерно-балочный.

Стрингеры — это элементы продольного набора каркаса фюзеляжа, которые связывают между собой элементы поперечного набора — шпангоуты. Стрингеры воспринимают главным образом продольные силы и подкрепляют жесткую обшивку.

По конструктивным формам стрингеры фюзеляжа подобны стрингерам крыла. Расстояние между стрингерами зависит от толщины обшивки и колеблется в пределах 80—250 мм.

Размеры сечения стрингеров изменяются как по периметру контура, так и по длине фюзеляжа в зависимости от характера и величины нагрузки на каркас фюзеляжа.

Лонжероны — это также элементы продольного набора каркаса фюзеляжа, которые, работая на сжатие-растяжение, воспринимают (частично) моменты, изгибающие фюзеляж. Как видно по задачам и условию работы, лонжероны фюзеляжа подобны стрингерам.

Конструктивное выполнение лонжеронов чрезвычайно разнооб

Устройство самолета: основные части и их названия

разно. Они представляют собой гнутые или прессованные профили различных сечений, на самолетах большой грузоподъемности склепываются из нескольких профилей и листовых элементов.

Шпангоуты являются элементами поперечного набора фюзеляжа, они придают фюзеляжу заданную форму поперечного сечения, обеспечивают поперечную жесткость, а также воспринимают местные нагрузки.

Устройство самолета: основные части и их названия

 В ряде случаев к шпангоутам крепятся перегородки, разделяющие фюзеляж на ряд отсеков и кабин.

Шпангоуты разделяются на нормальные и силовые. Силовые шпангоуты устанавливаются в местах приложения сосредоточенных нагрузок, например в местах крепления крыла к фюзеляжу, стоек шасси, частей оперения и т. п.

Нормальные шпангоуты (рис. 53) собираются из дуг, штампованных из металлического листа. Сечение нормальных шпангоутов чаще всего швеллерное, иногда Z-образное и реже тавровое. Силовые шпангоуты склепываются из отдельных профилей и листовых элементов. Иногда такие шпангоуты выпрессовываются на мощных прессах из алюминиевого сплава.

Расстояние между шпангоутами обычно колеблется в пределах 200—650 мм.

Обшивка выполняется из листов дюралюминия или титана различной толщины (от 0,8 до 3,5 мм) и крепится к элементам каркаса заклепками либо приклеивается. Листы обшивки соединяются между собой по стрингерам и шпангоутам или встык, или внахлест, без подсечки. В последнем случае каждый передний лист перекрывает нижний. Типовое соединение обшивки со стрингерами и шпангоутами показано на рис. 53.

Вырезы в обшивке фюзеляжа балочного типа резко уменьшают прочность конструкции. Поэтому для сохранения необходимой прочности обшивку у вырезов подкрепляют усиленными стрингерами и усиленными шпангоутами. Небольшие вырезы окантовываются кольцами из материала большей толщины, чем обшивка, иногда необходимая жесткость обеспечивается отбортовкой отверстия.

Фюзеляжи самолетов небольших размеров делают, как правило, неразъемными. У более крупных самолетов для упрощения производства, ремонта и эксплуатации фюзеляж расчленяют на несколько частей. Соединение частей фюзеляжа зависит от его конструктивной схемы. Соединение ферменных фюзеляжей производится стыковыми узлами, установленными на лонжеронах,

Устройство самолета: основные части и их названия

у балочных фюзеляжей крепление производится по всему контуру разъема.

На рис. 54 показаны типовые технологические разъемы фюзеляжа транспортного самолета. Фюзеляж состоит из трех частей, причем каждая из частей в свою очередь образована панелями, представляющими участки обшивки с элементами продольного набора.

Панели, соединяясь со шпангоутами, собираются окончательно в сборочном стапеле. Соединение панелей неразъемное и производится заклепочным швом, отдельные части фюзеляжа соединяются болтами по всему периметру разъема.

Стыковка осуществляется через фитинги, прикрепленные к стрингерам фюзеляжа (рис. 55).

Пол в кабинах самолета обычно рассчитывают на максимальную распределенную статическую нагрузку. На пассажирских самолетах эта нагрузка не превышает 500 кГ/м2, на грузовых достигает 750 и более кГ/м2. Каркас пола состоит из набора продольных и поперечных балок, стрингеров и соединяющих узлов.

Поперечный набор пола состоит из нижних балок шпангоутов. Пояса этих балок изготавливаются из фрезерованных или штампованных профилей. Панели, закрывающие каркас, изготавливают из листов прессованной фанеры толщиной 10—12 мм, из дюралюминиевых листов, усиленных прикрепленными снизу профилями

Устройство самолета: основные части и их названия

уголкового и швеллерного сечений или гофром из прессованных листов алюминиевого или магниевого сплава с последующей механической или химической обработкой.

Для предупреждения скольжения панели пола имеют рифленую или шероховатую поверхность, а в некоторых случаях покрываются пробковой крошкой.

На полу установлены гнезда для крепления пассажирских кресел, а на грузовых самолетах— кольца для крепления перевозимых грузов.

Устройство самолета: основные части и их названия

Окна пассажирской кабины делают прямоугольной или круглой формы. Все окна кабины, как правило, имеют двойные органические стекла. Очень часто в герметических кабинах внутреннее стекло является основным работающим стеклом и принимает на себя нагрузку от избыточного давления в кабине.

Только в случае разрушения внутреннего стекла наружное стекло начинает воспринимать избыточное давление. Межстекольное пространство через осушительную систему, предотвращающую стекла от запотевания и замерзания, связано с полостью гермокабины.

Уплотнение остекления выполняется с помощью мягкой морозоустойчивой резины, иногда — невысыхающей замазкой.

Застекленная часть фюзеляжа, обеспечивающая обзор экипажу, называется фонарем. Форма фонарей, их размещение и размеры выбираются из соображения обеспечения наилучшего обзора и наименьшего сопротивления. На рис. 56 показаны внешний вид фонаря штурмана и внешний вид фонаря кабины экипажа. Угол наклона козырька фонаря принимают равным 50—65° (в зависимости от величины V макс).

Лобовые стекла фонаря, как правило, оборудуются электрообогревом для предотвращения их обледенения в полете. Фонарь состоит из каркаса, отлитого или отштампованного из алюминиевого или магниевого сплавов, и стекол. Стекла крепятся к каркасу болтами и прижимаются дюралюминиевой лентой. Герметизация стекол осуществляется резиновой прокладкой, уплотнительной лентой и замазкой (рис.

56, в).

Вырезы под входные двери транспортных самолетов чаще всего располагаются на боковой поверхности фюзеляжей, но в некоторых случаях устанавливаются и в нижней части. Ширина двери обычно не превышает 800 мм, а высота — 1 500 мм.

Выбор размеров грузовых дверей (люков) и их размещение производятся с учетом габаритов грузов и минимальной затраты времени на загрузку (разгрузку) самолета. Открываются двери внутрь кабины либо сдвигаются вверх или в сторону. Двери делают обычно в виде клина, основанием которого является внутренняя поверхность створки двери.

Избыточное давление в герметизированном фюзеляже прижимает створку двери к ее основанию. В закрытом положении дверь запирается замком. При открытой двери в кабине экипажа загорается сигнальная лампочка.

Вырезы под двери усиливаются установкой в месте выреза более мощных шпангоутов и стрингеров, установкой дополнительной обшивки. Окантовка дверей входит в силовой каркас фюзеляжа. Дверь — металлическая, состоит, как правило, из отштампованной из листового дюралюминия чаши, подкрепленной каркасом. Герметизация дверей осуществляется с помощью резиновых профилей.

Многие современные самолеты летают на больших высотах и для обеспечения нормальной жизнедеятельности людей, находящихся на борту такого самолета, потребовалось создание в кабинах необходимого давления. Кабина самолета, внутри которой в полете поддерживается повышенное (по сравнению с атмосферным) давление воздуха, называется герметической.

Герметическая кабина, выполненная в виде обособленного силового агрегата и установленная в фюзеляже без включения ее в силовую схему, называется подвесной. Размеры такой кабины не зависят от размеров и обводов фюзеляжа, и поэтому она может быть выполнена с наивыгоднейшими с точки зрения прочности формами и минимальных размеров.

Кабины пассажирских самолетов, как правило, представляют собой герметизированный отсек фюзеляжа и полностью включены в его силовую схему. Подобная кабина работает как сосуд под действием внутреннего давления, а также подвергается изгибу и кручению, как и обычный фюзеляж.

По соображениям прочности наилучшей формой сооружения, нагруженного изнутри избыточным давлением, является шар, но в связи с несоответствием формы фюзеляжа и неудобствами размещения в такой кабине экипажа и пассажиров стремятся придать кабине форму цилиндрической оболочки, закрытой по концам сферическими днищами.

Переход с цилиндрических стенок на днище по возможности должен быть плавным без переломов. При наличии переломов днище, нагруженное избыточным давлением, сжимает стенки цилиндра в направлении радиусов и тогда в этом месте необходимо ставить усиленный шпангоут. Особенно сильно нужно подкреплять плоские днища.

Для сохранения в кабине избыточного давления необходимо обеспечить ее герметичность.

Разумеется, обеспечить полную герметичность кабины очень трудно, поэтому допускается некоторая утечка воздуха из кабины, не снижающая безопасности полета.

Критерием герметичности может служить время падения давления с величины рабочего избыточного до значения 0,1 кГ/см2. Это время должно быть не менее 25—30 мин.

Герметизация кабин достигается: герметизацией обшивки и остекления люков и дверей, выводов из кабин тяг, тросов, валиков управления самолетом и двигателями, электропроводки, трубопроводов гидросистем и т. п.

Герметизация листов обшивки в месте их соединения и крепления к элементам каркаса фюзеляжа достигается применением многорядных швов, установкой специальных уплотнительных лент, закладываемых между листами обшивки и каркаса. С внутренней стороны кабины заклепочные швы покрываются герметизирующими замазками.

Герметизация входных дверей, загрузочных люков, запасных выходов, подвижных частей фонаря, окон (остекления) и т. п. осуществляется резиновыми профилями и прокладками.

Применяются следующие способы герметизации: уплотнение типа «нож по резине»; уплотнение резиновой прокладкой, имеющей сечение трубы; уплотнение с помощью пластинчатого клапана; уплотнение резиновой трубкой, надуваемой воздухом.

Люки и двери, открывающиеся внутрь кабины, герметизируются по первым трем указанным способам. При герметизации с помощью пластинчатого клапана полосу из пластинчатой резины укрепляют с внутренней стороны по контуру выреза, тогда избыточное давление прижимает края клапана к люку и тем самым герметизируются щели.

Сложней загерметизировать люки, открывающиеся наружу и имеющие относительно большие размеры, так как внутреннее избыточное давление будет отжимать люк. Такие люки герметизируются чаще всего резиновой трубкой, надуваемой воздухом.

Гермовыводы тяг и тросов управления, электрических проводов и других элементов существуют трех типов: одни из них рассчитаны на обеспечение возвратно-поступательного движения, другие обеспечивают герметизацию вращательного движения, а третьи герметизируют неподвижные детали.

Читайте также:  Билеты на самолет: наличие мест и смоимость билетов

Для обеспечения герметичности тяг с возвратно-поступательным движением часто используют гофрированный резиновый шланг цилиндрической или конической формы либо делают устройство, состоящее из корпуса, отлитого из магниевого сплава с запрессованными бронзовыми втулками, в которых перемещаются стальные тяги. Между тягами и втулками имеются войлочные и резиновые уплотнения. Внутренняя полость корпуса через специальное отверстие забивается консистентной смазкой.

Тросы герметизируются резиновыми пробками, имеющими сквозные отверстия диаметром меньшим, чем диаметр троса, и продольный разрез, позволяющий надевать пробку на трос. Для уменьшения силы трения трос на всей длине его хода покрывается незамерзающей смазкой, содержащей графит.

Герметизация деталей, передающих вращательное движение, осуществляется резиновыми уплотнительными кольцами. Герметизация трубопроводов производится с помощью специальных переходников, закрепленных на гермоперегородке. К переходнику с одной и другой стороны при помощи накидных гаек крепятся трубопроводы.

Электропроводка герметизируется при помощи специальных электровводов.

Используемая литература: «Основы авиации» авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

Источник: https://privetstudent.com/referaty/aviatsiya/516-konstrukciya-fyuzelyazhey-samoletov.html

Конструкция самолёта — это… Что такое Конструкция самолёта?

Конструкция самолёта наиболее часто представляет собой планер, состоящий из фюзеляжа, крыла и хвостового оперения, оснащённый двигателем и шасси. Современные самолёты оснащаются также авионикой.

Существуют, однако, иные конструктивные схемы современных самолетов. В частности всем известный бомбардировщик B-2, построенный по схеме «летающее крыло».

Другой пример — МиГ-29, построенный по так называемой несущей схеме, в которой вместо понятия фюзеляж применяется понятие корпус. (Корпус МиГ-29 — широкий фюзеляж, также участвующий в создании аэродинамической подъемной силы.

) Еще один пример альтернативной конструктивной схемы самолета — ЭКИП, который условно можно назвать «летающей черепахой» из-за его довольно своеобразной формы.

Основная статья: Планер самолёта

Обычно планер самолёта включает фюзеляж, крыло, хвостовое оперение, шасси и гондолы, куда помещают двигательные установки или другие агрегаты. Этот набор элементов характерен для классической конструктивной схемы. Некоторые элементы могут отсутствовать в других конструктивных схемах.

Компоновочные схемы

На сегодняшний день различают следующие существующие компоновочные схемы самолётов:

Фюзеляж

Основная статья: Фюзеляж

Устройство самолета: основные части и их названия

Различные типы фюзеляжей

Фюзеляж является «телом» самолёта. В нём располагаются кабина экипажа, основные топливные баки, системы управления и контроля, пассажирские салоны и багажные отсеки (в пассажирских самолётах) или грузовые отсеки (в грузовых самолетах), оружие (в боевых самолётах) и так далее. Фюзеляж состоит из продольных балок, шпангоутов и металлических (как правило, алюминиевых) листов.

Пассажирские самолёты разделяют на узко- и широкофюзеляжные. У первых диаметр поперечного сечения фюзеляжа составляет в среднем 2-3 метра. Диаметр широкого фюзеляжа — не менее шести метров.

Все широкофюзеляжные самолёты — двухпалубные: на верхней палубе располагаются пассажирские места, на нижней — багажные отсеки.

Существуют самолёты с двумя пассажирскими палубами — Airbus A380 и Боинг 747.

Крыло

Основная статья: Крыло самолёта

Устройство самолета: основные части и их названия

Ил-76, высокоплан с Т-образным оперением

Крыло является ключевой частью в конструкции самолёта, оно создаёт подъёмную силу: профиль крыла устроен таким образом, что консоль разделяет набегающий на самолёт поток воздуха. Над верхней кромкой крыла образуется область низкого давления, одновременно под нижней — область высокого давления, крыло «выталкивается» наверх, и самолёт поднимается.

Крыло чаще всего крепятся к фюзеляжу:

Крепление крыла непосредственно к центральной части фюзеляжа без центроплана характерно для боевых самолётов (Ту-22М). Самолёт также может иметь два, три и более крыла. Чаще всего у самолётов, имеющих два крыла — бипланов — одно крыло крепится к верхней части фюзеляжа, а другое — к нижней (Ан-2).

На крыле установлено множество отклоняющихся меньших консолей (механизации): закрылки, предкрылки, спойлеры, элероны, интерцепторы и другие. Они позволяют регулировать перемещение самолёта в трёх плоскостях, путевую скорость и некоторые другие параметры полёта.

На современных самолетах на крыльях часто устанавливаются вертикальные законцовки, уменьшающие завихрения воздуха на кончиках крыла, снижая уровень вибрации, и, как следствие, экономя топливо. Внутри крыльев (у крупных самолетов), как правило, установлены топливные баки.

У легких самолетов крылевые товпливные баки нередко подвещиваются к специальным вертикальным консолям-креплениям.

Аэродинамические свойства крыла определяются его геометрией: размахом, площадью, а также углом и направлением стреловидности. Существуют самолёты с изменяемой геометрией крыла: самолеты с изменяемой стреловидностью крыла, самолеты со складыващися крылом.

Оперение

Основная статья: Оперение (авиация)

Оперение устанавливается в хвостовой или носовой части фюзеляжа. Хвостовое оперение в большинстве случаев представляет собой вертикально расположенный киль (или несколько килей — как правило два киля) и стабилизаторы, близкие по конструкции к крылу. Киль регулирует азимутальную устойчивость самолёта по оси движения, а стабилизаторы — тангаж.

Хвостовое оперение чаще всего бывает фюзеляжным (Ил-86) или Т-образным (Ту-154, Ил-76). Реже встречаются два киля на обоих кончиках цельного стабилизатора (Ан-225), хотя оно было довольно распространным на самолетах Второй мировой войны (Пе-2, Ту-2).

На некоторых боевых самолётах дополнительное оперение устанавливается в носовой части фюзеляжа (Су-35).

Для обеспечения достаточной путевой устойчивости на высоких скоростях, сверхзвуковые самолёты имеют непропорционально большой киль (Ту-22М3) или два киля (Су-27, МиГ-25, F-15).

Шасси

Основная статья: Шасси летательного аппарата

С помощью шасси самолёт осуществляет взлёт и посадку, руление, стоянку. Шасси представляет собой демпферную стойку, к которой крепится колёсная тележка (у гидропланов — поплавок). В зависимости от массы самолёта различается конфигурация шасси.

Наиболее часто встречающиеся: одна передняя стойка и две основных (Ту-154, А320), одна передняя и три основных (Ил-96), одна передняя и четыре основных (Боинг 747), две передних и две основных (B-52).

Для ранних самолётов было характерно устанавливать две основных стойки и небольшое вращающееся колесо непосредственно под килем без стойки (Ли-2).

Также уникальную схему шасси имеет Ил-62: одна передняя стойка, две основных и выдвигающаяся штанга с одной колёсной парой в самом хвосте для устойчивости при разгрузке-погрузке. На самых первых самолётах стоек не было вообще, а колеса крепились на обыкновенную ось.

Колёсные тележки могут иметь различное количество колёсных пар: от одной (А320) до семи (Ан-225).

Управление поворотом самолёта на земле может осуществляться через привод к передней стойке шасси или дифференциацией режима работы двигателей (у самолётов с более чем одним двигателем). В полёте шасси убираются в специальные отсеки для уменьшения аэродинамического сопротивления.

Силовая установка

Основная статья: Авиационный двигатель

Самолёт приводится в движение двигателем-движителем. Для современных самолётов характерны турбореактивные или турбовинтовые двигатели. На ранних устанавливались поршневые.

Двигатель либо крепится к крылу или фюзеляжу с помощью пилона (в этом случае он помещается в защищённую гондолу), через который к нему подходят топливные трубки и различные приводы, либо встраивается непосредственно в фюзеляж. Компоновка может сильно различаться: на самолёте может быть всего один двигатель (F-16), два (Ту-204), три (Ту-154), четыре (Ил-96), шесть (Ан-225), восемь (B-52).

Системы бортового оборудования

Основная статья: Авионика

Устройство самолета: основные части и их названия

Колесо в разрезе, видны тормозные диски.

Современные летательные аппараты оснащены весьма сложным и разнообразным оборудованием, которые позволяют выполнять полеты при любых условиях. По действующей документации (Федеральные Авиационные Правила), оборудование летательных аппаратов включает: Авиационное оборудование (АО), Радиоэлектронное оборудование (РЭО), Авиационное вооружение (АВ) — для военных машин.

Системы бортового оборудования большинства летательных аппаратов включают:

В летательных аппаратах военного назначения могут устанавливаться:

  • Радиолокационные и телевизионно-оптические прицельные системы
  • Системы радиоэлектронного противодействия
  • Системы фото и ИК-разведки
  • Системы закрытой кодированной связи

и многое другое.

Тормозная система

Устройство самолета: основные части и их названия

Гусеничное шасси B-36, видны тормозные суппорты.

Систему торможения самолета можно разделить на две части:

См. также

Источник: https://dic.academic.ru/dic.nsf/ruwiki/648077

Конструкция самолета — как устроен и из чего состоит самолет

Сколько ведь раньше не пытались придумать самолет, а ведь все дело оказалось именно в конструкции. Каким-то образом громадные авиалайнеры поднимаются в воздух, и очень важным моментом является безопасность пассажиров. В данной статье будет подробно рассмотрено строение самолета, а именно его основных частей.

Конструкция самолета включает в себя:

  • Фюзеляж
  • Крылья
  • Хвостовое оперенье
  • Взлетно-посадочное устройство
  • Двигательная установка
  • Управляющие системы, авионика

Каждая из этих частей жизненно необходима для быстрого и безопасного полета самолета. Так же разбор составляющих поможет понять, как устроен самолет, и почему сделано все именно так, а не иначе.

Фюзеляж

Данный элемент конструкции представляет собой некую основу самолета, несущую часть, к которой прикрепляются другие части летательного агрегата.

Он собирает вокруг все основные части самолетов: хвостовое оперенье, шасси и двигательную установку, а каплеобразная форма отлично справляется с противодействующей силой во время его движения по воздуху.

Внутренность корпуса рассчитана на перевоз ценного груза, будь то оружие или военная техника, или же пассажиры; так же здесь размещается различное оборудование и топливо.

Крылья

Устройство самолета: основные части и их названия

Очень сложно найти самолет, устройство которого не предусматривало бы размещение наиболее узнаваемой его части – крыльев. Этот элемент служит для формирования подъемной мощи, и в современных конструкциях для увеличения этого параметра крылья размещают в плоском основании фюзеляжа самолета.

Сами крылья предусматривают в своей конструкции наличие специальных механизмов, при поддержке которых исполняется поворот самолета в одну из сторон.

Кроме того, данная часть летательного аппарата снабжается взлетно-посадочным устройством, что регулирует движение самолета в моменты взлетов и посадок, и оказывают помощь в контроле взлетной и посадочной скоростей.

Нужно еще подметить, что некоторые конструкции самолетов предусматривают наличие топливных баков в крыльях.

Помимо того каждое крыло оснащено консолью. При помощи подвижных составляющих, именуемых элеронами, осуществляется управление судном относительно его продольной оси; функционирование этих элементов осуществляется полностью синхронно. Однако, когда один элемент поворачивается в одну сторону, другой будет идти в противоположную; именно поэтому и происходит вращение корпуса фюзеляжа.

Хвостовое оперенье

Данный элемент строения летательного аппарата является не менее важным элементом. Хвост самолета состоит из киля и стабилизатора. Стабилизатор так же, как и крылья, имеет две консоли – правую и левую; основным предназначением данного элемента является регулирование движения самолета и сохранение заданной высоты с учетом влияния различных погодных условий.

Киль так же является неотъемлемой составной частью хвостового оперенья, что несет ответственность за поддержание нужного направления самолета во время его полета.

С целью произведения изменения высоты и направления были созданы два специальных руля, каждый из которых управляет своей частью хвостового оперенья.

Важным моментом является то, что не всегда элементы воздушных судов могут называться именно такими именами: так, например, опереньем могут называть хвостовую часть фюзеляжа, а иногда таким именованием обозначают лишь киль.

Взлетно-посадочное устройство

Короткое название устройства – шасси, является главным устройством, благодаря которому осуществляется успешный взлет и плавная посадка.

Не стоит недооценивать данный элемент летательного аппарата, так как его конструкция значительно сложнее, нежели просто колеса, выезжающие из фюзеляжа.

Если присмотреться к одной системе выпуска и уборки, то уже становится понятно, что конструкция очень серьезная, и представляет собой целый набор различных механизмов и устройств.

Двигательная установка

Устройство самолета: основные части и их названия

Устройство является основной движущей силой, что толкает летательный аппарат вперед. Ее расположение чаще всего располагается либо под крылом, либо под фюзеляжем. Двигатель так же состоит из некоторых обязательных частей, без которых его функционирование не представляется возможным.

Основные детали двигателя:

  • Турбина
  • Вентилятор
  • Компрессор
  • Камера сгорания
  • Сопло

Размещающийся в самом начале турбины вентилятор служит нескольким функциям: нагнетает захватываемый воздух и занимается охлаждением элементов двигателя.

Читайте также:  Аэропорт бове: как добраться до парижа

Сразу же вслед за ним располагается компрессор, что принимает подаваемый вентилятором воздух и под сильным давлением запускает его в камеру сгорания.

Теперь горючее смешивается с воздухом, и полученная в результате смешивания субстанция поджигается.

Поток от взрыва данной топливной смеси выплескивается в основную часть турбины, что заставляет ее вращаться. Так же приспособление для кручения турбины обеспечивает постоянное вращение вентилятора, образуя подобным способом циклическую систему, что будет работать всегда, пока воздух и топливо будут поступать из камеры сгорания.

Управляющие системы

Авионика представляет собой электронный вычислительный комплекс из различных бортовых устройств системы самолета, что помогают считывать актуальную информацию во время навигации и ориентации подвижных объектов.

Без этого обязательного компонента корректное и правильное управление любым летательным аппаратом типа лайнера было бы попросту невозможным.

Так же эти системы обеспечивают бесперебойную работу самолета; сюда можно отнести такие функции, как автопилот, система противообледенения, бортовое электроснабжение и множество других.

Устройство самолета: основные части и их названия

Классификация воздушных судов и особенности конструкции

Все без исключения воздушные суда можно разделить на две основные категории: гражданские и военные. Самым основным их отличием является наличие салона, что обустроен намеренно с целью перевозки пассажиров. Сами же пассажирские самолеты разделяются по вместительности на магистральные ближние (расстояние перелета до 2000 км), средние (до 4000 км) и дальние (до 9000 км)

Если дальность перелета еще больше, то для этого используются лайнеры межконтинентального типа. К тому же, разнотипные летательные аппараты имеют разницу в весе. Так же авиалайнеры могут различаться в связи с определенным типом и, непосредственно, предназначением.

Конструкция самолета зачастую может обладать разной геометрией крыльев. Для самолетов, что осуществляют пассажирские транспортировки, конструкция крыльев не отличается от классической, что характерно именно авиалайнерам. Модели самолетов данного вида обладают укороченной носовой составляющей, и из-за этого имеют относительно невысокий КПД.

Есть еще одна специфическая форма, что зовется «утка», благодаря своему расположению крыльев. Горизонтальное оперенье размещается перед крылом, что увеличивает подъемную силу. Недостатком такой конструкции можно назвать уменьшение зоны обзора нижней полусферы из-за присутствия перед самим крылом оперенья.

Вот мы и разобрались, из чего состоит самолет. Как Вы могли уже заметить, конструкция довольно непростая, и различные многочисленные детали должны работать слаженно, что бы самолет смог подняться в воздух и после ровного полета удачно приземлился. Конструкция часто бывает специфической, и может существенно разниться в зависимости от модели и назначения самолета.

Источник: https://VPolete.online/samoletyi/stroenie.html

Основные части самолёта и их назначение

Устройство самолета: основные части и их названия

  • К основным частям самолёта относятся:
  • · крыло;
  • · фюзеляж;
  • · оперение;
  • · шасси;
  • · силовая установка;
  • · система управления.
  • Крыло(1) предназначено для создания подъёмной силы Y и обеспечения поперечной устойчивости, а элероны, расположенные на концах крыла в хвостовой его части, обеспечивают поперечную управляемость самолёта.

На крыле располагается механизация (закрылки, щитки, предкрылки), улучшающая взлётно-посадочные характеристики. В крыле может размещаться топливо, к крылу могут крепиться шасси, двигатели, подвесные топливные баки, вооружение.

Фюзеляж (2) предназначен для размещения в нём экипажа, пассажиров, грузов, он является основной силовой частью самолёта, т.к. к нему крепятся все остальные части самолета.

Оперение подразделяется на горизонтальное: стабилизатор (3) и руль высоты (4), и вертикальное: (киль (5) и руль направления (6).

Горизонтальное оперение (Г.О) обеспечивает продольную устойчивость (стабилизатор) и управляемость (руль высоты).

Вертикальное оперение (В.О) обеспечивает путевую устойчивость (киль) и управляемость (руль направления).

Шасси(7) – это система опор самолета, предназначенная для устойчивого передвижения самолёта по земле, стоянки, взлета и посадки. Для уменьшения сопротивления на современных самолетах шасси в полете убирается.

  1. Силовая установка (8) включает в себя двигатели, топливную и маслянную системы и предназначена для создания в полёте тяги, необходимой для перемещения самолета.
  2. Система управления подразделяется на основную и вспомогательную.
  3. Основная система управления предназначена для управления движением самолёта, а вспомогательная — для управления отдельными частями и агрегатами.
  4. В основную систему управления входят: ручка управления (штурвал с колонкой на тяжёлых самолётах) и педали, а также проводка управления, которая соединяет рули с рычагами управления.
  5. Система управления самолетом выполнена таким образом, чтобы воздействия на командные рычаги соответствовали естественным рефлексам пилота.

При отклонении ручки управления (штурвальной колонки) вперед («от себя») руль высоты отклоняется вниз и нос самолета опускается вниз. При движении ручки «на себя» руль высоты отклоняется вверх и самолет поднимает нос вверх.

Отклонение руля направления обеспечивается нажатием педалей. Если пилот нажимает на правую педаль, то руль направления отклоняется вправо, и самолет поворачивается вправо и наоборот.

Дата добавления: 2016-12-27; просмотров: 6788; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник: https://poznayka.org/s77658t1.html

Основные части самолета и их назначение

Самолет
принято расчленять на основные части
или агрегаты, законченные в конструктивном
или технологическом отношении. К таким
частям относят крыло, фюзеляж,
горизонтальное и вертикальное оперение,
шасси, силовую установку, систему
управления и оборудование.

Крыло
самолета (рис. 2.2) создает подъемную
силу и обеспечивает поперечную
устойчивость и управляемость. К крылу
часто крепятся двигатели, шасси, топливные
баки, вооружение. Внутренние объемы
крыла используются для расположения
топлива, противообледенительных
устройств и другого оборудования. Крылья
самолетов снабжаются средствами
механизации для улучшения взлетно-посадочных
характеристик.

Рис.
2.2. Общий вид и компоновочная схема
самолета

Фюзеляж
или корпус служит для размещения экипажа,
пассажиров или грузов, двигателей,
передних ног шасси и соединяет все части
самолета в одно целое.

Горизонтальное
оперение обеспечивает продольную
устойчивость, управляемость и балансировку.
Оно состоит из неподвижной части –
стабилизатора и подвижной – руля высоты.

Вертикальное
оперение осуществляет путевую
устойчивость, управляемость балансировку;
состоит из неподвижной части – киля и
подвижной – руля направления.

Шасси
представляет систему опор, предназначенных
для взлета, пробега после посадки,
передвижения по аэродрому и стоянки.
Конструкция шасси имеет упругие элементы,
поглощающие кинетическую энергию
самолета.

Силовая
установка предназначена для создания
силы тяги и включает комплекс двигателей
с системами, обеспечивающими их работу,
и воздушные винты (для самолетов с ТВД
и ПД).

Система
управления включает командные посты
управления, проводку управления и органы
управления (рули). Предназначена для
управления самолетом по заданной
траектории.

Оборудование
самолетов представляет собой комплекс
устройств, обеспечивающих безопасность
полета самолета в сложных погодных
условиях и на разных высотах. Включает
в себя электрическое, гидравлическое,
радиотехническое, пилотажно-навигационное,
высотное и другое оборудование самолета.

Компоновка самолета

Компоновкой
самолета называют процесс пространственной
увязки частей самолета, размещение
грузов, пассажиров, экипажа, топлива,
оборудования. Общая компоновка самолета
включает аэродинамическую, внутреннюю
(или весовую) и конструктивно-силовую
компоновку.

Аэродинамическая
компоновка состоит в выборе схемы
самолета, взаимного расположения частей
и придания самолету аэродинамических
форм. Поскольку аэродинамическая схема
задана, то при выполнении лабораторной
работы студенту необходимо выполнить
внутреннюю компоновку, т.е. разместить
экипаж, пассажиров, грузы, топливо и
оборудование.

Кабина
экипажа размещается в носовой части
фюзеляжа и отделяется от остальных
отсеков перегородкой. Размеры ее зависят
от состава экипажа.

На военных самолетах
в зависимости от назначения может быть
один или два члена экипажа, на пассажирских
и транспортных в зависимости от веса и
протяженности авиалиний в экипаж входит
от двух до четырех человек: командира
корабля, второго пилота, бортинженера,
и штурмана.

Рис.2.3.
Компоновка кабины экипажа

1,2
– кресла лётчиков; 3,4 – кресла для
дополнительных членов экипажа.

Наиболее
важным элементом компоновки кабины
экипажа является размещение летчиков.
При этом должен быть обеспечен хороший
обзор летчику: вправо-влево 20-30º от линии
визирования, вверх-вниз – 16-20º и
оптимальное расстояние до приборной
доски и командных постов управления.

Типовая
компоновка кабины экипажа пассажирского
самолета приведена на рис.2.3.

  • Размеры
    и компоновка пассажирских кабин зависит
    от количества пассажиров и класса
    пассажирского оборудования.
  • В
    настоящее время применяется три класса,
    отличающихся друг от друга комфортом
    и условиями обслуживания.
  • В
    первом, высшем классе обеспечивается
    наибольшее расстояние между рядами
    сидений, удельный объем кабины на одного
    пассажира до 1,8м3,
    возможность отдыха в креслах в полулежащем
    положении.
  • Второй,
    или туристский класс характеризуется
    более плотным размещением пассажиров,
    удельным объемом, равным 1,5м3,
    отклонением спинки сидения до 36º.
  • Третий,
    экономический класс имеет еще более
    плотное размещение пассажиров с удельным
    объемом 0,9-1,2м3
    отклонением спинки сидений до 25º.

Пассажирские
сидения выполняются в виде блоков из
двух или трех сидений. Размеры кресел
зависят от класса пассажирской кабины.
Основные размеры кресел приведены в
таблице.

Пассажирские
кабины по длине фюзеляжа обычно делятся
на несколько салонов, разделяемых
перегородками.

При
компоновке пассажирских салонов следует
избегать размещения пассажиров в
плоскости вращения винтов и в зоне
расположения двигателей. Эти объемы в
фюзеляже используются для размещения
кухонь, гардеробов или багажных помещений.

На
больших самолетах для обслуживания
пассажиров в состав экипажа включаются
бортпроводники: на 30-50 пассажиров –
один бортпроводник. Каждый бортпроводник
обеспечивается откидным сидением в
служебном помещении за кабиной экипажа
или радом с входными дверями.

Таблица

Основные
размеры пассажирских кресел

  1. Класс
  2. пассажир-
  3. ских
  4. сидений
Расстояние междуподлокотниками Ширина подлокотника Длина подушки сидения Высота сидения над полом Ширина спинки Длина спинки от подушки сидения Угол отклонения спинки от вертикали Высота сидения Ширина блока сидения Расстояние между рядами сидений
  • Iй класс
  • 2й(турист)
  • 3й(эконом)
  1. 470 70 470 300 430 720 55 1100 1200 1420 960
  2. 440 50 450 320 430 700 36 1100 1030 1520 840
  3. 410 40 430 320 430 700 25 1100 970 1430 750

Пассажирские
кабины по длине фюзеляжа обычно делятся
на несколько салонов, разделяемых
перегородками.

При
компоновке пассажирских салонов следует
избегать размещения пассажиров в
плоскости вращения винтов и в зоне
расположения двигателей. Эти объемы в
фюзеляже используются для размещения
кухонь, гардеробов или багажных помещений.

На
больших самолетах для обслуживания
пассажиров в состав экипажа включаются
бортпроводники: на 30-50 пассажиров –
один бортпроводник. Каждый бортпроводник
обеспечивается откидным сидением в
служебном помещении за кабиной экипажа
или радом с входными дверями.

Багаж
пассажиров располагается под полом
пассажирских кабин или в специальных
багажных отсеках в хвостовой части
фюзеляжа из расчета 0,25м3
на одного пассажира.

При
полетах в зимнее время необходимо
предусмотреть гардеробы. Площадь под
гардеробы составляет 0,035-0,05м2
на одного пассажира. Рекомендуется
гардеробы размещать вблизи входных
дверей.

На
самолетах с большой длительностью
полета пассажиры обеспечиваются
бесплатным питанием. Для размещения
продуктов питания и соответствующего
оборудования на самолете предусматривается
буфет-кухня с объемом 0,1-0,2м3
на одного пассажира.

Количество
туалетных помещений зависит от количества
пассажиров и продолжительности полета.
При продолжительности полета от 2 до 4
часов рекомендуется один туалет на 40
пассажиров. Площадь пола туалетных
помещений должна быть не менее 1,5-1,6м2.
Туалетные
помещения следует располагать в носовой
и хвостовой частях фюзеляжа, вблизи
входных дверей.

Оборудование
самолетов принято объединять в блоки,
комплексы и размещать в специальных
технических отсеках. Сами технические
отсеки располагаются в местах, к которым
тяготеет определенная часть оборудования.

  • В
    качестве одного из вариантов можно
    привести следующую компоновку блоков
    оборудования.
  • В
    носовой части фюзеляжа перед герметической
    кабиной располагаются агрегаты
    радиолокационной станции (РЛС), аппаратура
    и антенны захода на посадку.
  • Подполом
    герметической кабины располагается
    гидравлическое оборудование и оборудование
    для систем управления самолетом.
  • В
    фюзеляже непосредственно за кабиной
    размещается кислородное, радиотехническое,
    электрооборудование и противопожарное
    оборудование;
  • в
    центроплане – оборудование, обслуживающее
    топливную систему, средства механизации,
    шасси; в хвостовой части фюзеляжа –
    оборудование для элементов управления
    самолетом и радиотехнические блоки.

Источник: https://studfile.net/preview/4288243/page:3/

Ссылка на основную публикацию